If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8n^2+6n-434=0
a = 8; b = 6; c = -434;
Δ = b2-4ac
Δ = 62-4·8·(-434)
Δ = 13924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{13924}=118$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-118}{2*8}=\frac{-124}{16} =-7+3/4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+118}{2*8}=\frac{112}{16} =7 $
| 5y-2+y-6=9y+10+y+13 | | 7(x+1)+2=5x+15 | | X(y+3)+5=7 | | 15/6=n/9 | | x*6=80 | | 0.13=2x-0.67 | | 6x²-33x+42=0 | | 88=(22/7)d | | 3.2/12=4x/7.5 | | 4(x+6=3x-7 | | -5x+7=-5x-7 | | 12=9c/5 | | 16x*9x=60 | | 3a^2+12a+7=0 | | 7x^2+13x-8=39x | | 5(3w+7)/3=-6 | | x^2+45x+12=-188 | | -6(2f+4)=24 | | 0.3(1-x)+0.7x=x | | x^2+4x-26=-7x | | x3-x4=0 | | x=8/10=0 | | 4(x+2=x-1 | | 6x^2-27x+8x-36=0 | | 4x-2/6=5/3 | | 5(4s+4)=260 | | x^2-6x+9=3x+1 | | 15=3/2v | | x10-6=2 | | -5x+11=-x-7 | | 11x+3=9x-13 | | 3x^2-16x+4=10x^2+8 |